2

Universal higher-order bulk-boundary correspondence of triple nodal points

Triple nodal points are degeneracies of energy bands in momentum space at which three Hamiltonian eigenstates coalesce at a single eigenenergy. For spinless particles, the stability of a triple nodal point requires two ingredients: rotation symmetry …

Delicate topology protected by rotation symmetry: Crystalline Hopf insulators and beyond

Pontrjagin's seminal topological classification of two-band Hamiltonians in three momentum dimensions is hereby enriched with the inclusion of a crystallographic rotational symmetry. The enrichment is attributed to a new topological invariant which …

Simulating hyperbolic space on a circuit board

The Laplace operator encodes the behavior of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we …

Exceptional Topological Insulators

We introduce the exceptional topological insulator (ETI), a non-Hermitian topological state of matter that features exotic non-Hermitian surface states which can only exist within the three-dimensional topological bulk embedding. We show how this …

Multicellularity of delicate topological insulators

Being Wannierizable is not the end of the story for topological insulators. We introduce a family of topological insulators that would be considered trivial in the paradigm set by the tenfold way, topological quantum chemistry, and the method of …

From triple-point materials to multiband nodal links

We study a class of topological materials which in their momentum-space band structure exhibit threefold degeneracies known as triple points. Focusing specifically on $\mathcal{PT}$-symmetric crystalline solids with negligible spin-orbit coupling, we …

Geometric approach to fragile topology beyond symmetry indicators

We present a framework to systematically address topological phases when finer partitionings of bands are taken into account, rather than only considering the two subspaces spanned by valence and conduction bands. Focusing on …

Non-Abelian reciprocal braiding of Weyl nodes and its manifestations in ZrTe

Weyl semimetals in three-dimensional crystals provide the paradigm example of topologically protected band nodes. It is usually taken for granted that a pair of colliding Weyl points annihilate whenever they carry opposite chiral charge. In stark …

Alice strings in non-Hermitian systems

An Alice string is a topological defect with a very peculiar feature. When a defect with a monopole charge encircles an Alice string, the monopole charge changes sign. In this paper, we generalize this notion to the momentum space of periodic media …

Non-Abelian topology of nodal-line rings in $\mathcal{PT}$-symmetric systems

Nodal lines inside the momentum space of three-dimensional crystalline solids are topologically stabilized by a $\pi$-flux of Berry phase. Nodal-line rings in $\mathcal{PT}$-symmetric systems with negligible spin-orbit coupling (here described as …