Hyperbolic lattices present a unique opportunity to venture beyond the conventional paradigm of crystalline many-body physics and explore correlated phenomena in negatively curved space. As a theoretical benchmark for such investigations, we extend …
Multifractal analysis is a powerful tool for characterizing the localization properties of wave functions. Despite its utility, this tool has been predominantly applied to disordered Hermitian systems. Multifractal statistics associated with the …
We establish a connection between the electromagnetic Hall response and band topological invariants in hyperbolic Chern insulators by deriving a hyperbolic analog of the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula. By generalizing the Kubo …
We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in negatively curved space. Due to their distinct translation group structure, such lattices support non-Abelian Bloch states which, unlike …
Wave functions on periodic lattices are commonly described by Bloch band theory. Besides Abelian Bloch states labeled by a momentum vector, hyperbolic lattices support non-Abelian Bloch states that have so far eluded analytical treatments. By …
Particles hopping on a two-dimensional hyperbolic lattice feature unconventional energy spectra and wave functions that provide a largely uncharted platform for topological phases of matter beyond the Euclidean paradigm. Using real-space topological …
We introduce and experimentally realize hyperbolic matter as a novel paradigm for topological states, made of particles moving in the hyperbolic plane with negative curvature. Curvature of space is emulated through a hyperbolic lattice using …
Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-) dimensional momentum space. To …
Motivated by the recent experimental realizations of hyperbolic lattices in circuit quantum electrodynamics and in classical electric-circuit networks, we study flat bands and band-touching phenomena in such lattices. We analyze noninteracting …
We study the Hatano-Nelson model, i.e., a one-dimensional non-Hermitian chain of spinless fermions with nearest-neighbor nonreciprocal hopping, in the presence of repulsive nearest-neighbor interactions. At half filling, we find two $\mathcal{PT}$ …